High School Science Virtual Learning

Chemistry

Theoretical Yield, Percent Yield, \&
Actual Yield April 22, 2020

High School Chemistry Lesson: 4/22/20

Objective/Learning Target:

Students will be able to calculate the theoretical yield and the percent yield, given an actual yield

Let's Get Started:

When sodium chloride reacts with silver nitrate, silver chloride precipitates.

1. Complete and balance the reaction described above.
2. What mass of AgCl is produced from $75.0 \mathrm{~g} \mathrm{AgNO}_{3}$?

Let’s Get Started: Answer Key

1. $\mathrm{NaCl}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgCl}+\mathrm{NaNO}_{3}$

2. $75 \mathrm{~g} \mathrm{AgNO}_{3} \times \frac{1 \mathrm{~mole} \mathrm{NO}_{3}}{169.8 \mathrm{~g} \mathrm{AgNO}_{3}} \times \frac{1 \mathrm{~mole} \mathrm{AgCl}}{1 \mathrm{~mole} \mathrm{NO}_{3}} \times \frac{143.3 \mathrm{~g} \mathrm{AgCl}}{1 \mathrm{~mole} \mathrm{AgCl}}=63 \mathrm{~g} \mathrm{AgCl}$

Lesson Activity:

Directions:

1. Answer the following questions on the handout, as you watch the following video.

Links:

- Video:Percent Yield Made Easy Video
- Handout:Percent Yield Made Easy Video Worksheet

Practice

Complete the following questions using the information you learned during the lesson activity.

Questions:

1. "Slaked lime," $\mathrm{Ca}(\mathrm{OH})_{2}$, is produced when water reacts with "quicklime," CaO. If you start with 2400 g of quick lime, add excess water, and produce 2060 g of slaked lime, what is the percent yield of the reaction?

Questions:

2. Some underwater welding is done via the thermite reaction, in which rust $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ reacts with aluminum to produce iron and aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$. In one such reaction, 258 g of aluminum and excess rust produced 464 g of iron. What was the percent yield of the reaction?

Questions:

3. Use the balanced equation to find out how many liters of sulfur dioxide are actually produced at STP if 1.5 x 10^{27} molecules of zinc sulfide are reacted with excess oxygen and the percent yield is 75%. $2 \mathrm{ZnS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad 2 \mathrm{ZnO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$

Questions:

4. The Haber process is the conversion of nitrogen and hydrogen at high pressure into ammonia, as follows:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Longleftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If you must produce 700 g of ammonia, what mass of nitrogen should you use in the reaction, assuming that the percent yield of this reaction is 70% ?

Once you have completed the practice questions check with the answer kev.
 $2060 \mathrm{~g}=$ actual yield
 $$
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}
$$
 $$
2400 \mathrm{~g} \text { excess } \quad \mathrm{xg}=\text { theoretical yield }
$$
 $$
x \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}=2400 \mathrm{~g} \mathrm{CaO}\left(\frac{1 \mathrm{~mol} \mathrm{CaO}}{56 \mathrm{~g} \mathrm{CaO}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{1 \mathrm{~mol} \mathrm{CaO}}\right)\left(\frac{74 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}\right)=3171 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}
$$

$$
\% \text { Yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \Rightarrow \% \text { Yield }=\frac{2060 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}{3171 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}} \times 100 \Rightarrow 65 \%
$$

$$
464 \mathrm{~g}=\text { actual yield }
$$

2.

$$
\underset{\text { excess }}{\mathrm{Fe}_{2} \mathrm{O}_{3}}+\underset{258 \mathrm{~g}}{2 \mathrm{Al}} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\underset{\mathrm{xg}=}{2 \mathrm{Fe}}
$$

$$
\text { excess } \quad 258 \mathrm{~g} \quad \times \mathrm{g}=\text { theoretical yield }
$$

$$
\times \mathrm{gFe}=258 \mathrm{~g} \mathrm{~A}\left(\frac{1 \mathrm{~mol} \mathrm{Al}}{27 \mathrm{~g} \mathrm{Al}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{Fe}}{2 \mathrm{~mol} \mathrm{Al}}\right)\left(\frac{55.8 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}\right)=533 \mathrm{~g} \mathrm{Fe}
$$

$$
\% \text { Yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \Rightarrow \% \text { Yield }=\frac{464 \mathrm{~g} \mathrm{Fe}}{533 \mathrm{~g} \mathrm{Fe}} \times 100 \Rightarrow 87 \%
$$

Once you have completed the practice questions check with the answer key.

3. $\begin{aligned} x \mathrm{LSO}_{2} & =1.5 \times 10^{27} \mathrm{~m} \text { cules } \mathrm{ZnS}\left(\frac{1 \mathrm{~mol} \mathrm{ZnS}}{6.02 \times 10^{23} \mathrm{~m} \text { cules } \mathrm{ZnS}}\right)\left(\frac{2 \mathrm{~mol} \mathrm{SO}_{2}}{2 \mathrm{~mol} \mathrm{ZnS}}\right)\left(\frac{22.4 \mathrm{~L} \mathrm{SO}_{2}}{1 \mathrm{~mol} \mathrm{SO}_{2}}\right) \\ & =5.58 \times 10^{4} \mathrm{LSO}_{2} \Leftrightarrow \text { theoretical yield } \\ \% \text { Yield } & =\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \Rightarrow 0.75=\frac{X \mathrm{LSO}_{2}}{5.58 \times 10^{4} \mathrm{LSO}_{2}} \Rightarrow 4.19 \times 10^{4} \mathrm{LSO}_{2}\end{aligned}$
4. $\quad \%$ Yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \Rightarrow 0.70=\frac{700 \mathrm{~g} \mathrm{NH}_{3}}{\mathrm{XgNH}_{3}} \Rightarrow 1000 \mathrm{~g} \mathrm{NH}_{3}$

$$
x \mathrm{gN}_{2}=1000 \mathrm{gNH}_{3}\left(\frac{1 \mathrm{~mol} \mathrm{NH}_{3}}{17 \mathrm{~g} \mathrm{NH}_{3}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}\right)\left(\frac{28 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}\right)=824 \mathrm{gN}_{2}
$$

More Practice:
Follow the links below to do more practice.

1. Percent Yield Worksheet
2. Percent Yield

Additional Practice:
Click on the link below for additional practice.
Khan Academy

